Skip to main content

SOLID-Liskov Substitution Principle (LSP) Real-Time Example in C#

The SOLID Principles are the design principles that enable us to manage several software design problems. These principles provide us with ways to move from tightly coupled code to loosely coupled and encapsulated real business needs properly. Also readable, adaptable, and scalable code.

The SOLID Principles guide developers as they write readable, adaptable, and scalable code or design an application.

The SOLID Principles can be applied to any OOP program.

The SOLID Principles were developed by computer science instructor and author Robert C. Martin. Now, SOLID principles have also been adopted in both agile development and adaptive software development.

The 5 principles of SOLID are:

1.      Single Responsibility Principle (SRP)

2.      Open-Closed Principle (OCP)

3.      Liskov Substitution Principle (LSP)

4.      Interface Segregation Principle (ISP)

5.      DependencyInversion Principle (DIP)

 

SOLID Principle: (3) Liskov Substitution Principle (LSP):

The Liskov Substitution Principle (LSP) states that any class must be directly replaceable by any of its subclasses without error. By Barbara Liskov and Jeannette Wing.

The Liskov Substitution Principle (LSP) states that even if the child object is replaced with the parent, the behavior should not be changed. That means child class objects should be able to replace parent class objects without compromising application integrity. So, child class should be perfectly substitutable for their parent class.

Using the Liskov Substitution Principle (LSP) can check whether inheritance is applied correctly or not in our application code.

The advantage of Using the Liskov Substitution Principle (LSP) is that increases code reusability.

 

Real-Time Example of Liskov Substitution Principle (LSP) in C#: Bank Accounts

Let’s see a real-time example of Bank Accounts to understand the Liskov Substitution Principle (LSP).

In the below example, we have a base class called BankAccount with Deposit and Withdraw methods. Two derived classes, SavingsAccount and CurrentAccount, inherit from it. Each derived class overrides the Withdraw method to implement account-specific withdrawal rules.

In the Main method, we create objects for SavingsAccount and CurrentAccount, but we define them as BankAccount type. This follows the Liskov Substitution Principle (LSP), which allows us to replace instances of derived classes with the base class without affecting the correctness (शुद्धता) of the program.

When performing withdrawal transactions on these accounts, their types do not need to be specified. The Withdraw method for each account type is implemented correctly based on its actual type.

 

Let's see the code sample,

namespace LSP

{

    //Imagine you have a base class BankAccount

    public class BankAccount

    {

        public string AccountNumber { get; set; }

        public decimal Balance { get; set; }

 

        public BankAccount(string accountNumber, decimal balance)

        {

            AccountNumber = accountNumber;

            Balance = balance;

        }

 

        public virtual void Deposit(decimal amount)

        {

            Balance += amount;

        }

 

        public virtual void Withdraw(decimal amount)

        {

            if (amount <= Balance)

            {

                Balance -= amount;

            }

            else

            {

                //Insufficient balance.

            }

        }

    }

 

    //We have two derived classes: SavingsAccount and CurrentAccount

    public class SavingsAccount : BankAccount

    {

        public decimal InterestRate { get; set; }

 

        public SavingsAccount(string accountNumber, decimal balance, decimal interestRate)

            : base(accountNumber, balance)

        {

            InterestRate = interestRate;

        }

 

        public override void Withdraw(decimal amount)

        {

            if (amount <= Balance)

            {

                Balance -= amount;

            }

            else

            {

                //Insufficient Funds.

            }

        }

    }

 

    public class CurrentAccount : BankAccount

    {

        public decimal OverdraftLimit { get; set; }

 

        public CurrentAccount(string accountNumber, decimal balance, decimal overdraftLimit)

            : base(accountNumber, balance)

        {

            OverdraftLimit = overdraftLimit;

        }

 

        public override void Withdraw(decimal amount)

        {

            if (amount <= Balance + OverdraftLimit)

            {

                Balance -= amount;

            }

            else

            {

                //Exceeded Overdraft Limit.

            }

        }

    }

 

    //Follow the Liskov Substitution Principle (LSP)

    public class Program

    {

        public static void Main()

        {

    BankAccount savingsAccount = new SavingsAccount("AKSA12345", 10000m, 0.03m);

    BankAccount currentAccount = new CurrentAccount("AKCA67891", 15000m, 5000m);

 

            savingsAccount.Withdraw(5000m);

            currentAccount.Withdraw(20000m);

 

            //Check A/C Balance

            PrintAccountBalanceDetails(savingsAccount);

            PrintAccountBalanceDetails(currentAccount);

 

            Console.ReadKey();

        }

 

        static void PrintAccountBalanceDetails(BankAccount account)

        {

            Console.WriteLine($"Account Number: {account.AccountNumber}, Balance: {account.Balance}");

        }

    }

}

Advantages of the Liskov Substitution Principle (LSP):

1.      Support for Polymorphism: LSP enables the effective use of polymorphism, allowing a single interface to be implemented by multiple classes with different behavior.

2.      Code Reusability

3.      Flexibility and Extensibility

4.      Design by Contract

Disadvantages of the Liskov Substitution Principle (LSP):

1.      Complexity in Inheritance Hierarchies: Inheritance hierarchies that become too deep or complex can make it challenging to maintain and ensure compliance with LSP

2.      Violations Can Be Subtle: Violations of the Liskov Substitution Principle can sometimes be subtle and difficult to detect.

By Anil Singh | Rating of this article (*****)

Popular posts from this blog

nullinjectorerror no provider for httpclient angular 17

In Angular 17 where the standalone true option is set by default, the app.config.ts file is generated in src/app/ and provideHttpClient(). We can be added to the list of providers in app.config.ts Step 1:   To provide HttpClient in a standalone app we could do this in the app.config.ts file, app.config.ts: import { ApplicationConfig } from '@angular/core'; import { provideRouter } from '@angular/router'; import { routes } from './app.routes'; import { provideClientHydration } from '@angular/platform-browser'; //This (provideHttpClient) will help us to resolve the issue  import {provideHttpClient} from '@angular/common/http'; export const appConfig: ApplicationConfig = {   providers: [ provideRouter(routes),  provideClientHydration(), provideHttpClient ()      ] }; The appConfig const is used in the main.ts file, see the code, main.ts : import { bootstrapApplication } from '@angular/platform-browser'; import { appConfig } from ...

How To convert JSON Object to String?

To convert JSON Object to String - To convert JSON Object to String in JavaScript using “JSON.stringify()”. Example – let myObject =[ 'A' , 'B' , 'C' , 'D' ] JSON . stringify ( myObject ); ü   Stayed Informed –   Object Oriented JavaScript Interview Questions I hope you are enjoying with this post! Please share with you friends!! Thank you!!!

List of Countries, Nationalities and their Code In Excel File

Download JSON file for this List - Click on JSON file    Countries List, Nationalities and Code Excel ID Country Country Code Nationality Person 1 UNITED KINGDOM GB British a Briton 2 ARGENTINA AR Argentinian an Argentinian 3 AUSTRALIA AU Australian an Australian 4 BAHAMAS BS Bahamian a Bahamian 5 BELGIUM BE Belgian a Belgian 6 BRAZIL BR Brazilian a Brazilian 7 CANADA CA Canadian a Canadian 8 CHINA CN Chinese a Chinese 9 COLOMBIA CO Colombian a Colombian 10 CUBA CU Cuban a Cuban 11 DOMINICAN REPUBLIC DO Dominican a Dominican 12 ECUADOR EC Ecuadorean an Ecuadorean 13 EL SALVA...

Encryption and Decryption Data/Password in Angular

You can use crypto.js to encrypt data. We have used 'crypto-js'.   Follow the below steps, Steps 1 –  Install CryptoJS using below NPM commands in your project directory npm install crypto-js --save npm install @types/crypto-js –save After installing both above commands it looks like  – NPM Command  1 ->   npm install crypto-js --save NPM Command  2 ->   npm install @types/crypto-js --save Steps 2  - Add the script path in “ angular.json ” file. "scripts" : [                "../node_modules/crypto-js/crypto-js.js"               ] Steps 3 –  Create a service class “ EncrDecrService ” for  encrypts and decrypts get/set methods . Import “ CryptoJS ” in the service for using  encrypt and decrypt get/set methods . import  {  Injectable  }  from ...

Angular Testing Questions and Answers | 9, 8, 7, 6

What Is Testing? The testing is a tools and techniques for a unit and integration testing Angular applications . Why Test? Tests are the best ways to prevent software bugs and defects. How to Setup Test in Angular Project? Angular CLI install everything you need to test an Angular application. This CLI command takes care of Jasmine and karma configuration for you. Run this CLI command- ng test The test file extension must be “.spec.ts” so that tooling can identify the test file. You can also unit test your app using other testing libraries and test runners. Types of Test – The all great developer knows his/her testing tools use. Understanding your tools for testing is essential before diving into writing tests. The Testing depends on your project requirements and the project cost. The types of Testing looks like - 1.       Unit Test 2.       Integration Test 3.       En...